LVL1 has a rocketeers group, is not working on ICBMs.

We’re very familiar with the Louisville Hackerspace LVL1 here at Hackaday. From their GLaDOS-inspired sentient overlord, an evil box to filter the Internet, and a friggin’ moat, LVL1 is the closest we’ve got to a mad scientist heard cackling from a wind-swept castle on a stormy night. It turns out they also have a rocketry program. Now we’re just waiting for confirmation of their subterranean complex of missile silos.
LVL1 has a rocketeers group, is not working on ICBMs.
The rocketery-oriented part of LVL1 spawned from a University of Louisville’s group. The goal of the group is to compete in the NASA University Student Launch Initiative, dedicated to competing against other teams to launch a scientific payload to 1 mile AGL. At the competition last May, the team placed 5th out of 42 teams and won the award for best website. We can’t wait to see what they come up with next year.



Even though the team is out of school for the summer, they’re still cooking up a few rocketry hacks. They’ve built a test stand to measure the thrust of off-the-shelf motors, kitbashed a few Estes Baby Berthas (very awesome and very easy if you have a laser cutter), and are starting a pulse jet project. We’re assuming the LVL1 Rocketeers group is just a front for their yet to be unveiled moon-based “laser” project, but you can check out a few videos from the ULSI competition after the break.
read the rest of article...

Firing Rocket Engines in the Wrong Direction — this is Only a Test

LVL1 has a new rocketeering group. This rocket engine testing platform is the first project to come out of the fledgling club. The purpose of the tool is to gather empirical data from model rocket engines. Having reliable numbers on thrust over time will allow the team to get their designs right before the physical build even starts.
Firing rocket engines in the wrong direction — this is only a test
The rig uses a pine base, with a PVC frame, threaded bolts, and a PVC cuff for mounting the engine in place. It is set to fire up in the air, directing the thrust down onto a scale. The flex sensor in the scale is monitored by an Arduino, and should be able to hold up to the 5000 pounds grams of thrust max which this type of engines can put out. The data is pushed via USB to a laptop computer where it is stored in a spreadsheet. Calibration would be an issue here. But as long as they’re always using the same strain sensor the numbers will be accurate enough relative to each other.
read the rest of article...

Tuna Can and Some Other Trash Turned Into a Stirling Engine

Next time you’re making yourself a tunafish sandwich, try to figure out how to build a Stirling engine from the leftovers (translated). If you can pull it off as well as [Killerlot] did we’d say you’ve earned your hacker badge.
Tuna can and some other trash turned into a Stirling engine
The can used in this project was actually sardines in tomato sauce, but the former contents are moot. The can serves as a steam chamber for the sterling engine. A cam rod, piston, and valve are all fashioned from paperclips, along with the support structure that holds them in place. Inside the can is a damp sponge. When an alcohol lamp is placed beneath the can it heats the water air inside, which creates pressure on the piston, pushing it up until the cam opens the valve, relieving pressure just in time for the cycle to start over again. Momentum is a necessary part of the mechanism and that’s where the CD fly-wheel comes in. See it chugging along in the clip after the break.
read the rest of article...

Sterling Engine Kludged Together From Whatever

Watching [Jam BD] build this working Sterling Engine from nothing is awe-inspiring. He literally did with what he had on hand. Even his build log forgoes phrases like “I ordered a…” in exchange for “I didn’t have any so…”.
Sterling Engine Kludged Together From Whatever
The cylinder heated by a candle is a pipe stuffed with aluminum foil which was hammered flat to get the best seal possible. The CDs prominently featured on the final product act as the fly-wheel. To ensure that there is enough mass [Jam] ganged three of them together. There is also a counter-weight affixed just off-center to help keep the wheel turning. The gears shown above were actually used more like mounting plates to build a cam. Looking at the body and frame of the device makes us wonder how in the heck this thing actually came together?



We can’t get enough of these kinds of hacks, which is why we had to go back and watch the tuna can Sterling Engine one more time.
read the rest of article...

Firing Rocket Engines In the Wrong Direction — This is Only a Test

LVL1 has a new rocketeering group. This rocket engine testing platform is the first project to come out of the fledgling club. The purpose of the tool is to gather empirical data from model rocket engines. Having reliable numbers on thrust over time will allow the team to get their designs right before the physical build even starts.
Firing rocket engines in the wrong direction — this is only a test
The rig uses a pine base, with a PVC frame, threaded bolts, and a PVC cuff for mounting the engine in place. It is set to fire up in the air, directing the thrust down onto a scale. The flex sensor in the scale is monitored by an Arduino, and should be able to hold up to the 5000
pounds grams of thrust max which this type of engines can put out. The data is pushed via USB to a laptop computer where it is stored in a spreadsheet.

Calibration would be an issue here. But as long as they’re always using the same strain sensor the numbers will be accurate enough relative to each other.
read the rest of article...

How to Convert an internal Combustion Engine to Run From Steam Power

We had no idea that what’s needed to convert an internal combustion engine to steam power is actually rather trivial. [David Nash] shows us how it’s done by performing the alterations on the engine of a string trimmer. These are the tools used to cut down vegetation around obstacles in your yard. The source of the engine doesn’t really matter as long as it’s a 2-cycle motor.
How to convert an internal combustion engine to run from steam power
This engine had one spark plug which is threaded into the top of the block. [David] removed this and attached his replacement hardware. For now he’s using compressed air for development, but will connected the final version to a boiler.


There are only a couple of important parts between the engine and the boiler. There’s an in-line oil reservoir to help combat the corrosive nature of the steam. There is also a check valve. In the video after the break [David] shows the hunk of a ball-point pen that he uses to actuate the check valve. It’s really just a spacer that the piston pushes up to open the valve. This will be replaced with a metal rod in the final version.
read the rest of article...

3D Printing a Rocket Engine

Most any rocket engine you’d find on a spacecraft – save for solid or hybrid rockets – use an engine system that’s fairly complex. Because of the intense heat, the fuel is circulated around the chamber before ignition giving a motor its regeneratively cooled nomenclature. This arrangement leads to a few complicated welding and machining processes, but surprisingly these obstacles can be overcome by simply printing a rocket engine on a 3D printer.
3D printing a rocket engine
The current engine is quite small, but still fueled just like any other proper rocket engine that makes it into Earth orbit. The fuel is propane, the oxidizer is NO2, and the entire device is ignited with an automotive spark plug. Of course this was an expensive proposition; a motor with 12 pounds of thrust cost somewhere in the range of four figures.



Printing a rocket engine has a few advantages over traditional manufacturing techniques. [Rocket Moonlighting] explains that traditional techniques (mills, lathes and other heavy equipment) are bound by labor, material, and time. The costs of printing a rocket engine are only bound by the volume of the finished piece, meaning the most expensive engine per unit of thrust is the one that will fit in your pocket; scaling up means more efficiency for less cost.



There are a few videos up after the break showing the engine in action at full throttle, a few start and restart tests, and a test that involved throttling the engine. It’s an extremely impressive piece of kit, and hopefully [Rocket Moonlighting] will release the CAD source so we can make our own.



EDIT: [RM] tells me his engine cost less than $2000 to make. If just 10 people wanted their own engine from a ‘group buy,’ the price would drop by more than half. If you’d like your own 3D printed rocket engine, you might do well to drop [Rocket Moonlighting] a line.
read the rest of article...

FUBAR Labs Builds a Rocket Engine

[Graham] over at FUBAR labs took it upon himself to build a rocket engine. This isn’t a simple solid-fuel motor, though: [Graham] went all out and built a liquid-fueled engine that is ignited with a spark plug.
The build started off with a very small ‘igniter’ engine meant to shoot sparks into a larger engine. This engine is fueled with ethanol and air – not the best fuel for a rocket engine by a long shot but save and cheap enough to do a few serious experiments with.
FUBAR Labs builds a rocket engine
To test out this small engine, [Graham] made a test platform out of aluminum extrusion to remotely control the fuel and oxidizer valves. The valves are controlled by an Arduino and XBee for remote operation and a telemetry downlink for measuring the fluid flow into the engine.

After he had some experience with pressure, plumbing, valves, and engines, [Graham] upgraded his fuel and oxidizer to gaseous oxygen and ethanol. With proper safety protocol in place, [Graham] was able to a series of three 3-second burns less than a minute apart as well as a single burn lasting nearly 5 seconds.

Even though [Graham] eschewed the usual stainless steel construction of rocket engines (his engine is milled out of aluminum), he demonstrated it is possible to build a real liquid-fueled rocket engine at home.
read the rest of article...

Almost Building an Engine From Hardware Store Parts

You can build a surprising amount of stuff from parts you can pick up at a hardware store. Sometimes, though, getting a project built from sections of pipe is very, very difficult. That’s the case with [Lou]‘s hardware store engine: despite an inordinate amount of cleverness, he just can’t seem to get an engine made from pipe fitting to work and is now asking for some ideas from other ingenious makers.
Almost building an engine from hardware store parts
The engine uses regular oxygen and propane tanks you can pick up at Home Depot with torch heads soldered onto half inch pipe. The fuel and oxygen are mixed in a T fitting until a grill igniter sets the gas mixture ablaze pushing a cylinder down the length of a copper pipe. The cylinder is attached to an aluminum flywheel that also controls the opening and closing of the oxygen and propane valves as well as switching the grill igniter on and off.

Right now, [Lou] can get the engine running, but only for one stroke of the cylinder. He’s having a bit of a problem turning this into a working motor. If you’ve got any idea on how to make [Lou]‘s engine work, drop a line in the comments. We’ll throw our two cents in and say he needs a valve on the exhaust, but other suggestions are always welcome.
read the rest of article...

Retrotechtacular: Fluid Coupling

We realize the transmission fluid of an automobile’s automatic transmission is used to transfer the power from the engine to the drive shaft. But after watching this Department of Defense video from 1954 we now have a full understanding of the principles involved in fluid coupling. Like us, you probably have seen a diagram of a transmission which shows the fan-like blades that are affected by the moving fluid.
Retrotechtacular: Fluid Coupling
But it’s worth watching the 12-minute clip after the break to understand how that liquid is moving and why that matters so much in the design. The motion of the rotors, along with the design of the enclosure, causes the fluid to move in a continual corkscrew —  the shape of slinky whose ends have been attached to each other. This type of illustration leads to an intuitive understanding of how it’s possible to facilitate an efficient power transfer using a liquid.



Check out some of the comments left in the Reddit thread regarding this film. We agree with [Runxctry]; there’s something about the format of the presentation that makes these informative and engaging to an almost addictive level. But maybe it’s just the engineering geek deep inside that’s cause these feelings?
read the rest of article...

Second grade science project: a steam engine

If you’re looking for a way to let the kids get hand-ons with science this is a perfect example of how to do it. [Erich] wanted to help out with his 7-year-old’s science project. They decided to build a working model of a steam engine but couldn’t find online instructions appropriate for the age group.
Second grade science project: a steam engine
 So the two of them not only pulled off the build, but then they wrote a guide for others to follow. The thing about it is, you really have to understand a concept to teach it to someone else. So we think the write-up is equally important to having actually done the experiment.

Steam can scald you if you’re not careful. But you don’t really need steam to explore the concepts of a steam engine. The main reason to use steam is that it’s a fairly rudimentary way to build pressure which can be converted to motion. For this demonstration the blue balloon provides that pressure. It’s feeding a reservoir that connects to the valve built out of straws.

A plastic piston inside pushes against the crank shaft, spinning the cardboard wheel on the left. When the piston travels past the valve opening it releases the air pressure until the machine makes a revolution and is in place for the next push. This is well demonstrated in the clip after the break.

read the rest of article...

Four-stroke engine with glass cylinder is a 2400 RPM piece of art

We know a lot about toggling bits in a register, but only a bit about how engines work. This one inspires us to throw ourselves into the field with reckless abandon. [Huib Visser] built this glass cylinder four-stroke engine and he took great care to make it beautiful. We don’t need our projects to be polished and gleaming, but we have to admit that this the opposite of what we see when popping the hood on our 12-year-old rust bucket out front.
Four-stroke engine with glass cylinder is a 2400 RPM piece of art
You can’t see it in this image, but just on the other side of the fly-wheel is a smaller wheel with a cord wrapped around it that acts as the pull start. This gets the toothed timing belt going along with the cylinder. As part of the demo video we get a good look at how the rotary intake and exhaust valves work. [Huib] also took the time to demonstrate how the rare earth magnets and
hall effect sensor reed switch synchronize the ignition system.
You won’t want to miss the end of the video which show it in action as It burns Coleman fuel (white gas) and is lubricated with WD-40. This is jaw dropping and it works like a charm, but still not that far removed from the concepts seen in [Lou's] hardware store engine project.

UPDATE: Here’s write up this engine (translated) [Thanks ChalkBored]
read the rest of article...

Diesel bike build: Round 2

[Alex] has been hard at work on his second vegetable-oil-powered diesel bike build. The last time we checked in, he was finishing off work on his Honda CB400. Unfortunately, he felt it wasn’t quite big enough to ride comfortably, and as most first builds go, it was burdened with its share of problems. Now he’s snagged a Yamaha XJ600 off eBay, cleaned it up and started the modifications. [Alex] extended the frame to accommodate a new engine, rebuilt the gearbox, and perhaps most daunting: turned down the pulleys with a vintage 1950′s lathe.
Diesel bike build: Round 2
Now that [Alex's] bike has passed the MOT inspections, he can enjoy cruising around while doing his part to save the environment. His build log details the process, and is packed with enough pictures to keep you busy for a few hours while it walks you through each step. You can watch the bike’s test-run video below. For you off-road types, check out the all-wheel drive motorcycle from last month.
read the rest of article...

DIY 250 lb thrust Liquid Oxygen/Kerosene Rocket

Robert’s Rocket Project has been going on for a long time. It has been around so long that you can go all the way back to posts from 2001, where he talks about getting his first digital camera! The site is dedicated to his pursuit of liquid fueled rocket engine building. It’s a great project log and he has finally come to the point where he will be testing his first flight vehicle soon.
DIY 250 lb thrust Liquid Oxygen/Kerosene Rocket
His latest project is a 250lbf regeneratively cooled engine. It uses kerosene as the fuel, and liquid oxygen as the oxidizer. The neat thing is he utilizes the temperature change of the liquid oxygen expanding to cool the chamber and nozzle before being burned. This allows for a very efficient and powerful combustion of the fuel. He has some videos of testing it on his site, we just wonder why he doesn’t host them on YouTube or something…
Anyhow, there’s more than enough info on his site to try and recreate some of his experiments, but perhaps you should start here instead: How to Design, Build and Test Small Liquid-Fuel Rocket Engines.
read the rest of article...

Electrified Yard Equipment Hauls Grass

[AmpEater] spent the summer converting yard equipment from internal combustion to electric power. The conversions run from a relatively tame Wheel Horse, to an insane Cub Cadet. The Wheel Horse lost its Kohler engine in favor of a hydraulic pump motor from a crown forklift. 48 volt power is supplied by MK lead acid gel cells. An Alltrax 300 amp controller keeps this horse reigned in.
On his Reddit thread, [AmpEater] says he is especially proud of his Cub Cadet zero turn ride on mower. For those who aren’t up on lawn implement terminology, a “zero turn” means a mower with zero turning radius. Zero turn mowers use two large wheels and tank style steering to turn within their own radius. We bet this style mower would also make a pretty good robot conversion, however [AmpEater’s] zero turn is still setup for cutting the grass.
Electrified Yard Equipment Hauls Grass
After pulling the V-twin motor the 48 volt Motenergy ME-1004 was put in place. Batteries are 3 x Enerdel 48V 33 amp hour lithium ion packs. The packs are wired in series to provide 144V nominal. Right about here is where our brain started to melt. A 48V motor on 144V has to mean magic smoke, right? This is where the motor controller magic comes in.



[AmpEater] used Evnetics soliton-jr motor controller. The controller appears to be operating as a DC to DC converter, dropping the 144v down to a safe 48v for the motor, as well as providing a host of other features. Even with a switcher dropping the voltage down, there is quite a bit of heat generated in the controller. The Soliton has liquid cooling capability, and [AmpEater] is experimenting with a Koolace PMP-450 system. We’re a bit worried about a PC cooling system standing up to the vibration and abuse a 50” lawn mower can dish out though.
In case you’re wondering, this is not a cheap conversion. The motor retails for over $500 USD, and the Controller for around $2100 USD, and the batteries are around $4500 USD per pack. That’s more than double original price of the Cub Cadet.  Understandably, these conversions would be outside the realm of the average homeowner, but they may be worthwhile for a commercial gardener. Even with the recent push toward 4 stroke motors, small engines are still major polluters. We wish we could say an electric mower is quieter than a gas-powered one, however as the video shows, much of the noise lawn mowers create is the blades themselves.
read the rest of article...

Restoring an Industrial Tractor

[Nickolas] dropped us a tip about a Youtube channel where [stevewatr] documents the restoration of an Oliver 770 tractor through no less than 133 videos. These videos span the last year, starting with finding the tractor in fairly dense undergrowth. He spends quite a bit of time troubleshooting the engine, explaining his thought process, and showing all of the steps he takes to get the tractor running reliably again. He also delves into fixes for the electrical and hydraulic systems.
Restoring an Industrial Tractor
In his tip, [Nickolas] said he just couldn’t stop watching, and we agree, this is really a fascinating series. One of the things we love about these videos is that [stevewatr] doesn’t filter out his mistakes. That means we get to see his failures and successes… Everything from how jump starting wasn’t possible with a small jumper wire, to getting the engine to start cold without a primer. That’s the beauty of our fail-of-the-week posts. Absorb it all, and you’ll be prepared when you run into related problems yourself.
[stevewatr's] last video doesn’t show a completed tractor, so we look forward to seeing what happens as the project progresses. Even if you aren’t interested in having a tractor of your own, you can certainly use some of this information while building your own personal mech. Give it a try!
read the rest of article...

(Please Don’t) Build a Jet Engine from a Toilet Paper Holder

Turbo charger Jet Engines have long been considered one of the holy grails of backyard engineering. This is with good reason – they’re hard to build, and even harder to run. Many a turbo has met an untimely end from a hot start or oil starvation. [Colin Furze] however, makes it look easy. [Colin] is a proponent of crazy hacks – we’ve featured him before for his land speed record holding baby carriage, and his pulse jet powered tea kettle.
(Please Don’t) Build a Jet Engine from a Toilet Paper Holder
In his latest video set, [Colin] takes a toilet brush holder, a toilet paper roll holder, a few plumbing fittings, and of course a small turbocharger from the scrap yard. Somehow he converts all of this into a working jet engine. The notable thing here is that there is no welding. Some of the joints are held together with nothing more than duct tape.



Calling this a working jet engine is not really an overstatement. As every backyard jet jockey knows, the first goal of DIY jets (aside from not hurting yourself) is self-sustaining. Turbines are spun up with air hoses, vacuums, or leaf blowers. The trick is to turn the fuel on, remove the air source, and have the turbine continue spinning under its own power. Once this happens, your engine is performing the same “Suck, Squeeze, Bang, Blow” combustion process an F-18 or a 747 uses.
All this doesn’t mean the engine can do anything useful beyond keep itself running. This is where the second goal of backyard jet engines come in – thrust. You need a usable amount of thrust before you can strap that engine to a go-cart and go cruising around the neighborhood.



[Colin’s] jet is built and tested over a two video set. the first outlines how to build it, and the second shows the jet running. As a safety note, [Colin] has hinted in the YouTube comments that there will be a third video in the series showing how he had an incident with a gas leak, and it led to him being put “out of action for a week”. Needless to say – don’t try this particular engine build at home.
read the rest of article...

An Homemade 48cc V8 Engine with injection

A few months ago we mentioned [Keith]‘s first project in the works, a 1/4 scale V8 engine. Today, we are amazed to see that his engine is finished and running really smoothly. What is even more impressive is that the entire project has been completed on manual mills and lathes. The thread on the Home Model Engine Machinist forum contains his build log in which he details how all the different parts were made.
An homemade 48cc V8 engine with injection
The engine has an electric starter, uses a fuel injection system and [Keith] even made his own injection molds for several plastic parts. The ECU is based on the Megasquirt-II, we guess it must have taken [Keith] many tries before correctly setting its parameters. A video of the engine in action can be viewed after the break.
You can find our previous coverage of this project as well as other miniature engines on this feature from last April.
read the rest of article...

3D Printed Cutaway Jet Engine Sounds Great

Thanks to the wonders of 3D printing, you can now have a 3D printed a jet engine of your very own. Unlike jet engines we’ve seen before, this one comes with no chance of the operator getting burned to a crisp. [Gerry] is a self-proclaimed “broken down motor mechanic” from New Zealand. He’s designed a rather awesome jet engine in 3D Software, and printed it on his UP Plus printer. The engine itself is a cutaway model of a high-bypass turbofan engine. While we’re not sure which make and model of jet engine this cutaway represents, we’re still very impressed.
3D Printed Cutaway Jet Engine Sounds Great
This isn’t just a static display model – the engine will actually spin up with the help of compressed air.  Separate start and run tubes send air to the turbine and main fain respectively. It even has that distinctive turbofan “buzz saw” sound. While this model is relatively safe, [Gerry] does warn to keep the pressure down, or it could come apart. To that end we’d recommend adding a regulator before the quick disconnect.
The Thingiverse project is a bit light on instructions.  However this situation is remedied by [hacksaw], who posted a pictorial and build log up on pp3d. [Hacksaw] did run into a few problems with the build, but nothing a little bit of superglue couldn’t fix. It may have fewer moving parts, but this definitely puts our old Visible V8 Engine kit to shame.
read the rest of article...